
A Brief History of Legion
Alex Aiken
Stanford

Joint work with LANL, SLAC & NVIDIA



Context

• This talk is about Legion the project
• What worked
• What didn’t
• The surprises

• Not about Legion the research
• Except a couple of ideas relevant to the story



Prehistory

• Worked on Sequoia (PSAAP)
• With Pat Hanrahan and Bill Dally
• Strong performance results
• But very static model was overly restrictive

• Wanted to investigate a more dynamic approach
• Needed to start over …
• A runtime system
• Task-based
• Asynchronous
• Hardware agnostic
• First-class data partitioning



2012: Legion

• The original group
• Mike Bauer (systems, computational science)
• Sean Treichler (long-time NVIDIA engineer)
• Elliott Slaughter (programming languages)

• Pat Hanrahan brought us into the EXaCT Center
• Met Jackie Chen’s combustion chemistry group
• Began to interact more with Pat McCormick



2014: S3D

• Ported S3D to Legion
• 100KLOC FORTRAN => 10KLOC Legion C++
• True codesign effort 
• 7X improvement over FORTRAN-MPI at scale
• Immediately became a production code

• The discovery
• Legion successfully late-binds performance decisions
• Makes finding a very fast implementation possible

• Variety of reactions
• From credulous to incredulous



2015: Regent

• Programming language targeting Legion API
• Simplified the programming model
• Ability to write kernels that took advantage of Legion
• True portability through code generation

• Not everyone wants or can use Regent
• Other constraints sometimes dictate working in C++
• We now had two programmer interfaces to support 



Late 2015: An Inflection Point

• Project was ~4 years old
• Already ancient for an academic effort

• Original students were close to graduating
• Mike (2014) and Sean (2016) went to NVIDIA Research
• Elliott (2017) went to SLAC

• Stop or try to continue?



• Design flaws that had to be fixed
• Partitioning too hard to use and too slow 
• Solution: Dependent Partitioning (2016)

• Control bottleneck in launching 100’s of tasks
• Solution: Control replication (2017, static)
• Solution: Control replication (2018, dynamic)

• Interoperation
• Solution we liked in 2017

• Invested in testing, debugging, profiling tools
• Transitioning past a research project

2015: Start of Phase 2



Broadening

• Extensive collaborations with Los Alamos
• FleCSI
• Later ECP
• Summer internships

• Bootcamps 2014, 2015, 2017, ?

• Graduate class at Stanford
• Teach Regent
• Students do a substantial project
• Used in multiple PhD theses



2016 PSAAP II

• Multiphysics problem 
• Turbulence, particles, radiation
• Close collaboration with ME at Stanford

• Initial plan: Develop two codes
• One in DSL that targeted Legion
• One in MPI
• Rationale: Risk mitigation, ability to do comparisons



2017-8 A Crisis

• Two-system effort had practical problems
• Divided effort meant less progress on both
• Challenge to keep the systems equivalent

• MPI system became too difficult to manage

• Could we use Legion for the one and only system?
• DSL addressed turbulent fluid flow
• But DSL couldn’t be extended to handle particles/radiation
• Didn’t have the capacity to write two more DSLs

• Solution
• Write particle/radiation portions in Regent
• Continue to use the DSL for fluid flow



The Resolution

• But developers decided they wanted one language
• Regent

• Led to the Regent auto-parallelizer
• DSL compiler technology generalized and incorporated into the Regent compiler 

(2019)

• Result is Soleil-X (2019)
• A full multiphysics code
• Runs on multiple supercomputers w/o code changes
• At scale and efficiently
• And is < 10KLOC



2020: Entering Phase 3

• Legate (NVIDIA)
• Accelerated Numpy built on Legion

• FlexFlow
• TensorFlow replacement built on Legion
• Used by FaceBook, ECP, others

• Pygion
• Python interface to Legion API
• ECP ExaFel project

• PSAAP III



Summary

• Bootstrapping a programming model takes time
• The more new technology, the more time
• Team must write both the system and initial applications
• Second system effect
• Many bumps, turns in the road

• Partners are critical
• Initial user(s) with a high tolerance for pain
• Backers who can tolerate risk

• Tech transfer is different than research
• Requires longer time scales, non-research elements
• Necessary to keep the original team involved 



Legion

Legion website: http://legion.stanford.edu


